
C E R T A I N  E F F E C T S  OF  A N O N L O C A L  N A T U R E  

IN A C H A I N  I N V O L V I N G  L O N G - R A N G E  I N T E R A C T I O N  

IN AN E L A S T I C  M E D I U M  

A.  M. V a i s m a n  a n d  A .  P .  P u t i n t s e v a  

Recently considerable developments have taken place in the nonlocal theory of an e las t ic  medium 
[1, 3], which is closely re la ted  to the theory of the c rys ta l  latt ice.  It is accordingly of par t icular  in te res t  
to study the effects of nonlocalized interact ions within the f ramework of an extremely simple model,  that 
of a chain involving long-range forces  between its constituents.  In this paper we shall present  some new 
resul t s  achieved in this direction. In Section 1 we consider  the s t ructure  of the fundamental solution to 
the equation of motion of the chain. We shall show that this is determined by the distribution of the roots  
of the e las t i c -energy  opera tor  in the complex plane of wave numbers ,  the number of significant roots  co-  
inciding with the number of interacting neighbors.  We shall give the Green ' s  functions for an unlimited 
chain and also for the main boundary problems associa ted  with a half chain. For chains with local defects,  
we shall const ruct  an a lgor i thm for finding the Green ' s  functions in t e rms  of the Green ' s  function of an 
ideal chain. 

The mathemat ical  apparatus so developed will be used in Section 2 in order  to study the question of 
the static elast ic  interaction of defects in an external  field. We shall show that the corresponding energy 
is nonzero when it is not simply the nea res t  neighbors which interact  with each other in the chain. The 
dependence of the energy on the distance between the defects bears  a nonmonotonic charac te r .  The in te r -  
action in question may accordingly serve  as one of the mechanisms governing the formation of stable com-  
plexes of defects when these approach one another within a distance of the order  of the radius of the long- 
range forces  of interaction.  In conclusion, we shall consider  the interaction of a defect with a boundary 
in an external  field. 

1. The equation of motion of a nonuniform chain, considered in the harmonic approximation, takes 
the fo rm [4] 

(n) ~ (n, t) + F, �9 (n, n') u (n', t) = q (n, t) 
n" 

Here u and q are  the displacements  and external  forces ,  depending on the coordinate n and the time 
t; p(n) is the mass  of the atom with number n, ~ (n, n') is the kernel of the e las t ic -energy  opera tor  # sa t -  
isfying the conditions 

O ( n , n ' ) ~ - ~ ( n ' , n ) ,  ~ ( n , n ' ) = O  
. ,  (1 .i) 

It thus follows that r (n, n') may be expressed  in the form 

�9 ( n , n ' ) - ~ ( n ) 8 ( n - - n ' ) - - ~ ( n , n ' ) ,  ~(n)  = ~ W ' ( n , n ' )  
71" 

where ~I, (n, n') may be in terpre ted  as the rigidity of the effective elast ic coupling between the a toms with 
numbers  n and n ' .  In cer ta in  cases ,  it is more  convenient to use ~ (n, n') ra ther  than ~ (n, n'), in pa r t i c -  
ular  when considering boundary problems [5]. We consider  that the number of interacting neighbors N is 
finite, i.e.,  ~ (n ,  n ' ) = 0  if ] n - n ' l > N .  
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In addition to functions of n and t,  we shall also consider  the Four i e r  t r ans fo rms  of these ,  for  which 
we re ta in  the same notation, but with arguments  k and w. For  example [2], 

n 

in which k belongs to the segment  [ k [ _<~r. 

If the chain is uniform, then 

t) (n) = Po, r (n, n') = r  (n - -  n'), "I t (n, n')  = ~ o  (n - -  n') 

and the equation of motion in the (k, w) represen ta t ion  takes the fo rm 

r (k, (o) u (k, o)) ~ [ ~  co~'po q-Oo (k)] u (k, (o) = q (k, o)) (1.2) 

where  
N 

Oo(k)  = 2 ~ % ( n ) ( i  - r  (1 .3)  

In view of the per iodic i ty  of % (k), the l a t t e r  is completely de termined  by specifying k in the IRe k[ -< 
~r band of the complex plane, with identical  corresponding boundary points, so that the permiss ib le  range 
of k is the complex cyl inder  K. 

Let  us consider  the p rope r t i e s  of ~0 (k) for  k ~K. We may suppose,  for  s implici ty,  that the effective 
e las t ic  couplings a re  stable,  i .e. ,  ~I'0 (n)-> 0. Then for  k c K function ~0(k)has no roots  on the rea l  and imag-  
inary axes,  apa r t  f rom the twofold root  k 0 = 0. It follows f rom the f requency and rea lness  of r (k) that, if 
k m is a z e r o  of r (k), then so a re  kin, - k i n ,  - k in "  

According to (1.3), the function r (k) will be a polynomial in cos k of degree N; one of the ze ros  of 
this polynomial will be cos k0=l .  The r ec ip roca l  function G o (k)=~li0 -1 (k) will be the Four ie r  t r ans fo rm 
of the s tat ic  Green ' s  function for  the unbounded chain. This function may be expanded into v e ry  simple f r a c -  
t ions: 

N ~ I  

t sin k~ (Ira km ~ O) 
Go(k)  = 2c0 (t -- cos k) ~0' (am) (cos k -- cos k, 0 

N 

where  c o has the sense  of the e las t ic  modulus in the long-wave approximation.  

An analogous expansion occurs  for  the dynamic Green ' s  function: 
N--1 

sin k~(o)) (Ira k~ (o)) ~ O) 
G~ (k, ~) -- @0-I (k, o)) = --  ~, O0' (k~ (~)) (eoSk-- cos k~ (~)) 

?;a~O 

where  k m (w) a re  the roots  of r (k, col 

This formula  is wr i t ten  down on the assumption that the roots  k m (w) a re  s imple.  The general izat ion 
to the case of multiple roo ts ,  which a r i s e s ,  for  example,  in re la t ion  to f requencies  corresponding to the  ex-  
t r e m a  on the d ispers ion  curve,  is quite obvious. 

In the (n, w) rep resen ta t ion  we may wri te  

N_..U.I ieiTr Pq 
Go (n, (0) ----- ~ 0  ~ (Ira k,~ (co) > 0) (1.4) 

In the s ta t ic  case  we have 

Oo(n) I ,,I . ~ ~,% l,,J = - - ~  + Z J ~ )  (Ira k~>O)  (1.5) 

For  the interact ion of two neighbors ,  in par t icu la r ,  the las t  express ion  takes the fo rm 

no(n)  = ~ [ - I n l  + 2 ~ j  L 
(1.6) 
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~o (1) 
e'~, = - ( V 0  ~ ~: - V ~ )  ~, ~ = 4~0 (2) ( t . 7 )  

The fundamental solution of Eq. (1.2) is obtained by adding to (1.4) the general solution of the c o r -  

responding homogeneous equations: 

N--1 

~, [~e  ~km(~)n + ~ e  -~k,~(~)n ] (Im k~ (o) 90)  
m~0 

Here am,/~m are  arb i t rary  constants. We see from this that the structure of the fundamental solution 
is completely determined by the distribution of the roots ~0 (k, w) situated in the complex cylinder K. 

In considering boundary conditions, it is convenient to use the Green's functions of these problems, 
which may be obtained from the fundamental solution by appropriately choosing the constants a m and Pm 
so as to satisfy the corresponding boundary conditions. A formulation for boundary problems having forces 
(or displacements) specified in the boundary region may be derived from the conditions under consideration 
in the intermediate region between chains comprising atoms of different types by letting the elastic cou- 
plings character izingtheinteract ion between the chains tend to zero.  The corresponding boundary region 
is clearly determined by the radius of the long-range forces of interaction. This type of problem formu- 
lation was considered ear l i e r  [5] for the case of a continuous elastic medium involving long-range inter-  
action. 

Omitting some simple but ra ther  cumbersome calculations analogous to those of the ea r l i e r  paper 
[5], we shall now give the expressions representing the static Green's functions for a right-handed half chain 
with interaction between two neighbors. 

For a problem with forces  specified in the boundary region 

G0(rt '  n')---~ --~c0 t 2 ]Z&-(i +:) ~n,a'~O) (i.8) 

This function satisfies the homogeneous force conditions in the boundary region n= O, i. 

Correspondingly, for a problem with displacements specified at the boundary we obtain (n, n' ~0) 

2~o[ e~'(~§ (i--?~'~)(~--~'~') 1 G o ( n , n ' ) = - -  I n - n ' I - ( n - ~ n ' ) - ~  2 V ~ )  ~- l + a _  ~ ( i  +a) (1.9) 

It is easy to verify that the following homogeneous boundary conditions are satisfied: 

G0 (0, n')  = Go ( i ,  n')  = 0 (n' > 0) 

Let us now turn to the construction of the Green's function for a chain containing local defects, for 
simplicity confining attention to the static case. The method of construction will be analogous to that set 
out ea r l i e r  [6]. Let us use V (n) to denote the characterist ic  function of the region V containing N V points, 
the interaction between which is described by means of "distorted" elastic couplings. The kernel of the 
elast ic-energy operator q~may be expressed in the form 

r (n,  n' )  = r  (n - n') + ~v (n, n') 

where ~V (n, n') character izes  the defects, so that ~v(n,  n') r 0 solely for n, n' eV. Clearly ~ (n, n') sat-  
isfies conditions of type (1.1). 

The equation for the Green's function G (n, n') in operator form may be written as follows: 

@oG +~vG = I 

where I is the unitary operator.  

The application of operators G O and ~bvG0 successively to both sides gives 

G = Go -- G0qbvG (i.i0) 

AT2G ----- [ r -~ dgyG,~v] G = 60vG o (i.ii) 

The operator A V satisfies conditions of type (i.i) and hence (generally speaking) has no reciprocal. 
However, in a special class of functions fV (n) concentrated in the region V and satisfying the condition 
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Y , / v ( n )  = 0 
I I  

a r e c i p r o c a l  opera to r  exis ts  and may  be de te rmined  f r o m  

AvAv -i = Av-iAv = Iv 

where IV is the projection operator for the function space in question. The kernel of this takes the form 

I v  (n, n')  = V ( n ) V ( n ' )  [6 (n - -  n')  - -  .'V, -l] 

where  5 ( n - n ' )  is  the Kronecke r  delta.  

Applying the ope ra to r  AV-I to both s ides  of (1.11) and substi tut ing the r e su l t  in the r ight -hand side 
of (1.10), we obtain 

G = Go + GoPvGo (i.12) 

P v  = - -  69vAv-igPv = - -  [(PV -~ + IvGolv]  -1 (1.13) 

The  r e c i p r o c a l  o p e r a t o r s  here  introduced a re  to be understood in the foregoing sense .  

We emphas ize  that  in these  re la t ions  G o may be not only the G r e e n ' s  function of an unlimited chain 
but a lso  the Gree n ' s  function of any bounded p rob lem.  The fo rmulas  in question will provide an express ion  
for  the G r e e n ' s  function of the cor responding  boundary p rob lem in the case  of a chain containing defec ts .  
The val idi ty  of the cor responding  homogeneous boundary conditions for  G follows d i rec t ly  f r o m  the f o r m  
of Eq. (i.12). 

Let  us cons ider ,  for  example ,  a chain in which the re  is one defect  a tom with number  m.  Let  us sup-  
pose  that  only the couplings between the defect  and i ts  n e a r e s t  neighbors  a r e  dis tor ted,  so that  

~t'(m, r a - - 1 ) = l I ' ( m ,  m + l ) = T o ( t ) + r  

After  cor responding  calculat ions,  we find the expres s ions  for  the nonzero e lements  of the ma t r ix  PV 
(n, n') (n, n'  = m - - i ,  m,  r e+ l ) :  

- al + a~ - -  a~ 1 
i ai - -  al 4- a~ (1.14) 

Pv(n,  n')-= alaa__a~ al--2a~-Jcaa a~--aa 
- -  a ~  a 2  ~ ($3 a 3  

al = r~-I + A_lao (m, m)h_i, a~ = h_lao (m, re)hi, 
as = ~ - i  q_ Alao (m, ra)A1 ( 1 . 1 5 )  

where  A l denotes the opera t ion  of the f i r s t  d i f ference,  applied,  depending on the disposi t ion of the sign, to 
the f i r s t  or  second a rgumen t  of G O (m, m),  for  example ,  

A_iG o(m, m)A1= [G o(m, m)--G o ( m + t ,  m)]Al 
= Go (m, ra) -- go (m, m -- t) "ao(ra+t,m)+ao (m + 1, rn -- t) 

2. As indicated e a r l i e r  [4, 6], G r e e n ' s  functions consti tute an e x t r e m e l y  convenient appara tus  for  
studying the e las t ic  in teract ion energy  of defects  in an externa l  field. Le t  us f i r s t  consider  an unl imited 
ctlain with a force  q act ing upon it. The energy  may  be wr i t t en  in the f o r m  

ffp --- ~ n q ( n ) u ( n ) =  ~ q ( n ) G ( n , n ' )  q(n ' )  (2.1) 

Let  us use  u 0 (n) to denote the d i sp lacements  of an ideal chain cor responding  to the fo rces  q (n) and 
@0 to denote i ts  energy .  Substituting (1.12) in the l a t t e r  express ion ,  we obtain 

(l)=(I)o~-O*, O*---- ~ u o ( n ) P v ( n , n ' ) u o ( n ' )  
�9 ,,,~'ev (2.2) 

where  @* may be in t e rp re t ed  as the in teract ion energy  of defects  with the field u 0. 

Let  us cons ider  an e x t r e m e l y  s imple  example  i l lus t ra t ing the in teract ion of defects with a field of 
uni form deformat ion  u 0 (n)=n.  Let  the a toms  with numbers  0, i and m,  m + l  be connected by defect ive coup- 
lings with c h a r a c t e r i s t i c s  ~=~0 (1) +r Calculation of the energy  @* for  such defects  leads to the following 
express ion :  

~ ,  = ~ 2 
~-~ + g (0) + g (m) ' g (m) = A2Go (m) = AIA_xGo (m) (2.3) 
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For  a chain involving the in terac t ion  of two neighbors  we obtain the following f r o m  (t.6) and (1.7): 

- 
g ( m )  - " - ' - - 

This  is an a l te rnat ing  function of m ,  vanishing as  m ~  4 .  Thereupon ~* tends to a l imi t ing value 

2 
0oo* = r + ~, (0) 

cor respond ing  to twice the in terac t ion  energy  of an i so la ted  defect ive coupling with the f ie ld  %. The dif-  
f e rence  @*--~li~* may  be in t e rp re t ed  as  the in te rac t ion  ene rgy  of the defect ive couplings wi th  each  other  
in a f ie ld of homogeneous (uniform) deformat ion .  This  energy  is propor t iona l  to g (m) and is hence a non-  
monotonic function of m .  It  is e a sy  to show that  this  r e su l t  r e m a i n s  va l id  even for  a chain with in te rac t ion  
involving a l a rge  num ber  of neighbors .  On the other  hand, if  the in teract ion between second neighbors  may  
be neglected (~--~ r then g (m)-* 0 and r  0. 

An analogous effect  t akes  place  in the in teract ion of two defect a toms  with d i s to r ted  couplings between 
each  a tom and its  n e a r e s t  ne ighbors .  These  couplings a r e  c h a r a c t e r i z e d  by the s ame  p a r a m e t e r  ~ as in 
the foregoing discuss ion.  Calculat ion of the cor responding  energy r for  the field u 0 (n) =n gives the ex-  
p r e s s i o n  

(I)* . . . . . . . . .  2 [2~-i  + h~ (g (0) - -  g (m))] 
(r + g (o) ~ g  (m -- i)) (~-1 + g (0) + g (rd+ i)) -- (~ d) + g (ra))~ (2.4) 

where  m is the dis tance between the defect  a t oms .  

The nonmonotonic c h a r a c t e r  of the re la t ionsh ip  between the in teract ion energy  of such defects  and 
the dis tance between them means  that  the in terac t ion  in question may consti tute one of the m e c h a n i s m s  
under lying the fo rmat ion  of s table  complexes  of defects when these  approach  one another  within a dis tance 
of the o rde r  of the long- range  rad ius  of in teract ion.  I t  should be noted that the absence  of in te rac t ion  be -  
tween defects  in a chain without long- range  fo r ce s  is a one-d imens ional  effect .  In a la t t ice  the defects  in-  
t e r a c t  with each  o ther  in the p r e s ence  of an ex te rna l  field, the cor responding  energy  falling off with in-  
c r ea s ing  dis tance between the defects  in accordance  with a power law. When long- range  fo rces  of i n t e r -  
act ion a r e  "connec ted  in," a l te rna t ing  and exponential ly at tenuating t e r m s  a re  added, and these  may  cause  
subs tant ia l  changes  in ene rgy  a t  d is tances  of the o r d e r  of the long- range  in terac t ion  r ad ius .  

Le t  us now turn  to the question of the in te rac t ion  of a defect  with a boundary.  If the fo r ce s  a r e  spec -  
fl ied in the boundary reg ion ,  Eq.  (2.1) for  the energy  of the chain r e m a i n s  val id,  if  G is the G r e e n ' s  function 
of the p a r t i c u l a r  boundary p rob l em.  F r o m  this follows the val idi ty  of (2.2) for  ~*, where  in (1.13) we m u s t  
subst i tute  the cor responding  Green,  s function G o for  PV. 

Let  us cons ider ,  by way of an i l lus t ra t ion ,  a semiinf ini te  cha in  with in teract ion between two neighbors ,  
in which the re  is one defect  a tom of the type ment ioned in the foregoing.  Let  the chain be subjec ted  to uni- 
f o r m  deformat ion  at  infinity (u (n)~n as n - - ~ ) ,  while a cor responding  balancing force  is appl ied a t  the s t a r t -  
ing point of the chain.  By using (1.8), we may  read i ly  find the d i sp lacements  in the de fec t - f r ee  chain: 

uo (,) = n -- 2 lfK(i + a) (n >/0) 

Substituting into the second p a r t  of Eq. (2.2) and using (1.t4),  (1.15), and (1.8), we obtain 

ba + b~e zil~'m 

2 2 g i - - ~  . r ~ 2 0 + ~ )  [VV4--d "~-1 
Ca 

')] b~=2t .  ,x',l, + ~ ' , , ~ + ' u  _ , 

Here  m - -  1 is  the dis tance of the defect  f r o m  the s t a r t  of the chain. I t  may be shown that  the d i f fe r -  
ence r  ( m ) - o *  (~),  which in the p r e s e n t  ca se  is to be i n t e rp re t ed  as  the in terac t ion  energy  of the defect  
wi th  the boundary,  is a nonmonotonie function of m.  An analogous effect  takes  place in the case  of the r ig id  
fit t ing of the boundary  reg ion ,  when u 0 (n) t akes  the f o r m  

625 



In calculating u0, we use the GreenTs function (1.9). The calculat ion of ~* may be effected by means 
of the p rocedure  employed e a r l i e r  in the f i r s t  boundary problem,  but using (1.9) instead of (1.8). We ac-  
co t  dingly obtain 

O* ~ Cl 2{- c2e{~fl~ .J(-C38 f]i~lm 
c4 + cse ~l~'m . (m >11) 

c,=b,, c,-~--2 [ i ~-e-~', 4(1-~a)]c0 
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