CERTAIN EFFECTS OF A NONLOCAL NATURE
IN A CHAIN INVOLVING LONG-RANGE INTERACTION
IN AN ELASTIC MEDIUM

A. M. Vaisman and A. P. Putintseva

Recently considerable developments have taken place in the nonlocal theory of an elastic medium
f1, 3], which is closely related to the theory of the crystal lattice. It is accordingly of particular interest
to study the effects of nonlocalized interactions within the framework of an extremely simple model, that
of a chain involving long-range forces between its constituents. In this paper we shall present some new
results achieved in this direction. In Section 1 we consider the structure of the fundamental solution to
the equation of motion of the chain. We shall show that this is determined by the distribution of the roots
of the elastic-energy operator in the complex plane of wave numbers, the number of significant roots co-
inciding with the number of interacting neighbors. We shall give the Green's functions for an unlimited
chain and also for the main boundary problems associated with a half chain. For chains with local defects,
we shall construct an algorithm for finding the Green's functions in terms of the Green's function of an
ideal chain.

The mathematical apparatus so developed will be used in Section 2 in order to study the question of
the static elastic interaction of defects in an external field. We shall show that the corresponding energy
is nonzero when it is not simply the nearest neighbors which interact with each other in the chain. The
dependence of the energy on the distance between the defects bears a nonmonotonic character. The inter-
action in question may accordingly serve as one of the mechanisms governing the formation of stable com-~
plexes of defects when these approach one another within a distance of the order of the radius of the long-
range forces of interaction. In conclusion, we shall consider the interaction of a defect with a boundary
in an external field.

1. The equation of motion of a nonuniform chain, considered in the harmonic approximation, takes
the form [4]

p(n)a(n,t) + Q@ (n,n)u(n, 1) = q(n, 1)

Here u and q are the displacements and external forces, depending on the coordinate n and the time
t; p(n) is the mass of the atom with number n; & (n, n') is the kernel of the elastic-energy operator & sat-
isfying the conditions

@ (n,n') = (D(n,v n), Zlq)(n’ n')=20 (1.1)

It thus follows that & (n, n') may be expressed in the form

D(n,n)=pn)d(n—n")—¥(n,n), P(n)= Z‘:P’(n, n')

where ¥ (n, n') may be interpreted as the rigidity of the effective elastic coupling between the atoms with
numbers n and n'. In certain cases, it is more convenient to use ¥ (n, n') rather than & (n, n'), in partic-
ular when considering boundary problems [5]. We consider that the number of interacting neighbors N is
finite, i.e., ¥ (n, n') =0 if Jn—n'|>N.
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In addition to functions of n and t, we shall also consider the Fourier transforms of these, for which
we retain the same notation, but with arguments k and w. For example [2],

u(k,0) = 2\ dtu(n, 1) eitn-on

in which k belongs to the segment |k|=w.
If the chain is uniform, then
p(r)y=per D, n)=@(n—n), ¥ rn)y=¥(r—n)

and the equation of motion in the (k, w) representation takes the form

@y (%, 0) uk, o) =[— 0%y +Py B}l u (k, 0) = gk, ) (1.2)
where
) N
By (k) = 2 D) Po(n)(1 — cos kn) (1.3)

n=1

In view of the periodicity of &, (k), the latter is completely determined by specifying k in the |Re k| =
7 band of the complex plane, with identical corresponding boundary points, so that the permissible range
of k is the complex cylinder K,

Let us consider the properties of &, (k) for k ¢ K. We may suppose, for simplicity, that the eifective
elastic couplings are stable, i.e., ¥, (1) = 0. Then for k¢ K function & (k) has no roots on the real and imag-~
inary axes, apart from the twofold root ky=0. It follows from the frequency and realness of &, (k) that, if

k., is a zero of &, (k), then so are km, —ky,, —k;;,.

According to (1.3), the function &, (k) will be a polynomial in cos k of degree N; one of the zeros of
this polynomial will be cos ky=1. The reciprocal function G, (k) =&,~1 (k) will be the Fourier transform
of the static Green's function for the unbounded chain. This function may be expanded into very simple frac~
tions:

i . sink.
Go (k) = Zeo(l —cosky El O (k) (cos k“-‘— €08 k) (Im ke, > 0)
N

€ = 2 n*¥, (n)

n=1
where ¢, has the sense of the elastic modulus in the long-wave approximation.

An analogous expansion ocecurs for the dynamic Green's function:
N-—1 .
Golk,0) = O (k,0) = — D) ot (Im ke, (0) > 0)
m=p m

®)) {cos k& — ¢08 &y, (@)
where ky, (w) are the roots of &, (k, w).

This formula is written down on the assumption that the roots ky, (w) are simple. The generalization
to the case of multiple roots, which arises, for example, in relation to frequencies corresponding to the ex-
trema on the dispersion curve, is quite obvious,

In the (n, w) representation we may write

N—-x ieikm(m) nf

, - ; 1.4)
Go(n,0) Eﬂ iy | (mEa(0)3>0) (
In the static case we have
|n} g ieik"‘ il
Go(n) =—5- -+ P i (Im k&, >0) (1.5)
m=
For the interaction of two neighbors, in particular, the last expression takes the form
o _'L _ e"“h"l (1.6)
6ol =g [~ 171+ g7z
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e - Yo ld
€‘k‘ FER (V{i +a— V«)ﬁ, & = éwyz Ez; (1’?)
The fundamental solution of Eq. (1.2) is obtained by adding to (1.4) the general solution of the cor-
responding homogeneous equations:

N—1
D [ BN (T, () 30)
M=
Here oy, By are arbifrary constants. We see from this that the structure of the fundamental solution
is completely determined by the distribution of the roots &, (k, w) situated in the complex cylinder K.

In considering boundary conditions, it is convenient fo use the Green's functions of these problems,
which may be obtained from the fundamental solution by appropriately choosing the constants oy, and By
so as to satisfy the corresponding boundary conditions. A formulation for boundary problems having forces
{or displacements) specified in the boundary region may be derived from the conditions under consideration
in the intermediate region between chains comprising atoms of different types hy letting the elastie cou-
plings characterizing the interaction between the chains tend to zero. The corresponding boundary region
is clearly determined by the radius of the long-range forces of interaction. This type of problem formu-
lation was considered earlier [5] for the case of a continuous elastic medium involving long-range inter-
action.

Omitting some simple but rather cumbersome calculations analogous to those of the earlier paper
[5], we shall now give the expressions representing the static Green's functions for a right-handed half chain
with interaction between two neighbors,

For a problem with forces specified in the boundary region

eikdnsn't + ei?f;(n-wx')
2Va(ltu

This function satisfies the homogeneous force conditions in the boundary region n=0, 1.

G.,(n,n’):—z—i;[inmn’}—{-n{-n’»— }(n,n’)ﬂ) (1.8}

Correspondingly, for a problem with displacements specified at the boundary we obtain (n, n'=0)

Go(n,n')zz-—%{In——n'f~—(n+n')+

eikg(nann’) — eiﬁ',(n~n’) (4 — eikm) - ei?tm')
2Ya(l+a) t+a—Ya(l4a) }
It is easy to verify that the following homogeneous boundary conditions are satisfied:

G0, n)=G; (1, iy =0 (»" > 0)

Let us now turn to the construction of the Green's function for a chain containing local defects, for
simplicity confining attention to the static case. The method of construction will be analogous to that set
out earlier [6]. Let us use V (n) to denote the characteristic function of the region V containing Ny points,
the interaction between which is described by means of "distorted” elastic couplings. The kernel of the
elastic-energy operator #may be expressed in the form

D (n, 2)=D,(n—n") +Dy(n, n)

(1.9)

where &V (n, n') characterizes the defects, so that &y (n, n')# 0 solely for n, n'eV. Clearly &y (n, n'} sat-
isfies conditions of type (1.1).

The equation for the Green's function G (n, n') in operator form may be written as follows:

DG DG =1
where I is the unitary operator.

The application of operators G, and &y G, successively to both sides gives

G = G, — G,DyG (1.10)
A6 = [ By + DG,Dy16 = DiGy 1.11)

The operator Ay satisfies conditions of type (1.1) and hence (generally speaking) has no reciprocal.
However, in a special class of functions fy (n) concentrated in the region V and satisfying the condition
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dfv(m)=10
n
a reciprocal operator exists and may be determined from
AvAyi= Ay Ay = Iy
where Iy is the projection operator for the function space in question. The kernel of this takes the form
Iv(n, )=V V®E)I6 (n—nr)— Ny
where 6 {(n—n') is the Kronecker delta.

Applying the operator Ay~! to both sides of (1.11) and substituting the result in the right-hand side
of (1.10), we obtain :

@ = Gy -+ GoPvG, ' (1.12)
Py = — Oydy Oy =— [Py~ + IvGyly]™ (1.13)
The reciprocal operators here introduced are to be understood in the foregoing sense.

We emphasize that in these relations Gy may be not only the Green's function of an unlimited chain
but also the Green's function of any bounded problem. The formulas in question will provide an expression
for the Green's function of the corresponding boundary problem in the case of a chain containing defects.
The validity of the corresponding homogeneous boundary conditions for G follows directly from the form
of Eq. (1.12).

Let us consider, for example, a chain in which there is one defect atom with number m. Let us sup-
pose that only the couplings between the defect and its nearest neighbors are distorted, so that

¥(m, m— ) =¥ (m m+1)=¥, (1) +9

After corresponding calculations, we find the expressions for the nonzero elements of the matrix Py
(n, 0" (n, n'=m=1, m, m+1)

1 a1 — a4 o —az
Py (n, ”’)=m —a1-faz  g1—2a2-}-az oz —a3 (1.14)
—a ag — a3 a3
@ = *i"l + A6, {my m)A;, ay = A..1Go (m, m)Ay,
ag = @71+ MG, (my mdy : {1.15)

where Ay denotes the operation of the first difference, applied, depending on the disposition of the sign, to
the first or second argument of G, (m, m), for example,
A6, (my, m)By =[Gy (my m) — Gy (m 41, m)]A;
== Go (my m) — Gy (my m — 1) Go{m+1,m)+Go (m + 1, m — 1)
2. As indicated earlier [4, 6], Green's functions constitute an extremely convenient apparatus for
studying the elastic interaction energy of defects in an external field. Let us first consider an unlimited
chain with a force g acting upon it. The energy may be written in the form

® = Jgmum= 3 ¢m)Gn,n) g () 2.1)
Let us use u, (n) to denote the displacements of an ideal chain corresponding to the forces ¢ (n) and
§, to denote its energy. Substituting (1.12) in the latter expression, we obtain

D=0, F+ 0%, O*= D uy(n)Py(n,n)u(n’)
n,weV (2'2)

where ¢* may be interpreted as the interaction energy of defects with the field u,.

Let us consider an extremely simple example illustrating the interaction of defects with a field of
uniform deformation uy (n) =n. Let the atoms with numbers 0, 1 and m, m+1 be connected by defective coup-
lings with characteristics ¥=1, (1) +3. Calculation of the energy &* for such defects leads to the following
expression:

* = g (m) = AgGo (m) = AA_31Go () (2.3)

2
T T g 0y Fgm) °
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For a chain involving the interaction of two neighbors we obtain the following from (1.6) and (1.7):
g(m) = SRR /T — g/

This is an alternating function of m, vanishing as m-~«. Thereupon 3" tends to a limiting value

2
P +2(0)
correspondmg to fwice the interaction energy of an isolated defective coupling with the field uy. The dif-
ference & ~®. " may be interpreted as the interaction energy of the defective couplings with each other
in a field of homogeneous (uniform) deformation. This energy is proportional to g {m) and is hence a non-
monotonic function of m. It is easy to show that this result remains valid even for a chain with interaction
involving a large number of neighbors. On the other hand, if the inferaction between second neighbors may
be neglected (o — o), then g (m)— 0 and & — & — 0.

Dot = —

An analogous effect takes place in the interaction of two defect atoms with distorted couplings between
each atom and its nearest neighbors. These couplings are characterlzed by the same parameter ¥ as in
the foregoing discussion. Calculation of the corresponding energy 3" for the field Uy {0} =n gives the ex-~
pression

OF = — 212471 - Az (g (0) ~ g (m))]
T THTIE O FEm— D) F O Fem+ D — (g DTz mP (2.9)

where m is the distance between the defect atoms.

The nonmonotonic character of the relationship between the interaction energy of such defects and
the distance between them means that the interaction in question may constitute one of the mechanisms
underlying the formation of stable complexes of defects when these approach one another within a distance
of the order of the long-range radius of interaction. It should be noted that the absence of interaction be-
tween defects in a chain without long-range forces is a one-dimensional effect. In a lattice the defects in-
teract with each other in the presence of an external field, the corresponding energy falling off with in~
creasing distance between the defects in accordance with a power law. When long-range forces of inter-
action are "connected in," alternating and exponentially attenuating terms are added, and these may cause
substantial changes in energy at distances of the order of the long-range interaction radius.

Let us now turn to the question of the interaction of a defect with a boundary. If the forces are spec-
ified in the boundary region, Eq. (2.1) for the energy of the chain remains valid, if G is the Green's function
of the particular boundary problem. From this follows the validity of (2.2) for &*, where in (1.13) we must
substitute the corresponding Green's function G, for Py.

Let us consider, by way of an illustration, a semiinfinite chain with interaction between two neighbors,
in which there is one defect atom of the type mentioned in the foregoing. Let the chain be subjected to uni-
form deformation at infinity (u (n) ~n as n— ), while a corresponding balancing force is applied at the start-
ing point of the chain. By using (1.8), we may readily find the displacements in the defect-free chain:

eikm

uo(n}zn—é—m__—._—;;—) {(n=>0)
Substituting into the second part of Eq. (2.2) and using (1.14), (1.15), and (1.8), we obtain
o5 — 51 +b zeikﬂ?l +63825kxm
- bg+b532ik‘m
2 }.. Vita il [1 2 4+ a) (Vi‘Ta )
b=+ @ Yo Ut h=—digm VX ! ]
_1ta 2(i+a)(V1+a 1)}
= W% T va Tw/l
. ( 1 1/1+a)a 149 o, , _g_V1+a(1+2a 2(1+a))
1= 1P cﬂ Va - (1602 € » BE= Co "f& ‘lp - Cp

Here m> 1 is the distance of the defect from the start of the chain. It may be shown that the differ—
ence &* (m)—~&* (), which in the present case is to be interpreted as the interaction energy of the defect
with the boundary, is a nonmonotonic function of m. An analogous effect takes place in the case of the rigid
fitting of the boundary region, when u, (n) takes the form
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{— eikm

) =n =S

(n>0)

In calculating u,, we use the Green's function (1.9). The calculation of &* may be effected by means
of the procedure employed earlier in the first boundary problem, but using (1.9) instead of (1.8). We ac-
cordingly obtain
e1 - cael® o ppedikem

4+ 05ezik1m_

~iks
_ 420 4 2d+a9) (Vita
“—"2[T“‘+T—(’Va~—+i z
_ 27 YiTy [1-[—-20& 2(1+9)
= o Va P + co

Dt =

(m>1)

o1 ==by
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